Article 8215

Title of the article

ON ONE NUMERICAL METHOD OF IMMUNOLOGY PROBLEMS MODELING

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru
Zakharova Yuliya Fridrikhovna, Candidate of physical and mathematical sciences, associate professor, sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru
Dmitrieva Alla Arkad'evna, Senior lecturer, sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru

Index UDK

519.6

Abstract

Background. Research of mathematical models of immunology at the present time is an actively developing field, located in the junction of medicine, biology and mathematics. There have been suggested multiple models of development of immune system reactions to various external influences, among which the closest to clinical practice are the Marchuk models and generalizations thereof. The models are described by systems of regular differential equations of high order with various delays, and solution thereof in the analytical form is impossible. Therefore, the development of numerical methods for solving nonlinear differential equation systems with various delays in nonlinear operators is topical relevant.
Materials and methods. Computing schemes are based of the exponential representation of solution, suggested in the article, allowing to form the iteration method with nonnegative approximations at each step.
Results. The authors suggested the iteration method for solving nonlinear regular differential equation systems with delays, modeling immune reactions to viral and bacterial diseases. The researchers studied the ways of implementing various therapies by the example of the basic (simple) model.
Conclusions. The researchers developed the approximate method of researching mathematical models of immunology, featuring nonnegative approximation at each step of the iteration process. The method may be used in the research of similar models in engineering, ecology and economy (Volterra type models).

Key words

mathematical methods of immunology, numerical methods, iteration method.

Download PDF
References

1. Marchuk G. I. Matematicheskie modeli v immunologii. Vychislitel'nye metody i eksperimenty [Mathematical models in immunology. Computing methods and experiments]. Moscow: Nauka, 1991, 304 p.
2. Nowak M. A., May R. M. Virus dynamics. Mathematical principles of immunology and virology. Oxford University Press, 2000, 237 p.
3. Murray J. D. I. An Introduction. 3rd edition. Springer, 2002, 576 p.
4. Murray J. D. II. Spatial Models and Biomedical Applications. 3rd edition. Springer, 2003, 830 p.
5. Wodarz D. Killer Cell Dynamics Mathematical and Computational Approaches to Immunology. Springer Science + Business Media, LLC, 2007, 220 p.
6. Bernet F. M. Kletochnaya immunologiya: per. s angl. [Cellular immunology: translation from English]. Moscow: Mir, 1971, 542 p.
7. Bolodurina I. P., Lugovskova Yu. P. Vestnik Samarskogo gosudarstvennogo universiteta. Ser. Estestvennonauchnaya [Bulletin of Samara State University.Series:Natural sciences].2009,no.8(74),pp.138–153
8. Romanyukha A. A., Rudnev S. G., Zuev S. M. Sovremennye problemy vychislitel'noy matematiki i matematicheskogo modelirovaniya. T. 2. Matematicheskoe modelirovanie [Modern problems of calculus mathematics and mathematical modeling. Vol. 2. Mathematical modeling]. Moscow: Nauka, 2005, pp. 352–404.
9. Belykh L. N. Analiz matematicheskikh modeley v immunologii [Analysis of mathematical models in immunology]. Moscow: Nauka, 1988, 190 p.
10. Boykov I. V., Zakharova Yu. F., Dmitrieva A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2008, no. 4, pp. 47–61.
11. Boykov I. V. Ustoychivost' resheniy differentsial'nykh uravneniy [Stability of differential equation solutions]. Penza: Izd-vo PenzGU, 2008, 244 p.
12. Boykov I. V., Zakharova Yu. F., Dmitrieva A. A. Matematicheskoe i komp'yuternoe modelirovanie estestvennonauchnykh i sotsial'nykh problem: sb. st. V Mezhdunar. nauch.-tekhn. konf. molodykh spetsialistov, aspirantov i studentov [Mathematical and computer modeling of natural-science and social problems: proceedings of V International scientific and technical conference of young specialists, postgraduates and students]. Penza: Izd-vo PGU, 2014, pp. 101–109.

 

Дата создания: 06.10.2015 15:12
Дата обновления: 20.10.2015 15:32